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 

Abstract—The zero-mean normalized cross-correlation was 

shown to improve the accuracy of optical flow, but it’s analytical 

form is quite complicated for the variational framework.  This 

work addresses this issue and presents a new direct approach to 

this matching measure. Our approach uses the correlation 

transform to define very discriminative descriptors that are pre-

computed and that have to be matched in the target frame. It is 

equivalent to the computation of the optical flow for the 

correlation transforms of the images. The smoothness energy is 

non-local and uses a robust penalty in order to preserve motion 

discontinuities. The model is associated with a fast and 

parallelizable minimization procedure based on the projected-

proximal point algorithm. The experiments confirm the strength 

of this model and implicitly demonstrate the correctness of our 

solution. The results demonstrate that the involved data term is 

very robust with respect to changes in illumination, especially 

where large illumination exists.  

 
Index Terms—correlation transform, correlation flow, 

correlation-based descriptors, non-local flow propagation, 

parallelizable numerical scheme, changes in illumination 

I. INTRODUCTION 

ENSE optical flow estimation gained a lot of interest in the 

last years due to its importance in environment 

perception. The increasing power of computation units 

facilitated the development of increasingly accurate models. 

Work on dense optical flow spans over three decades. In [1], 

Horn and Schunck (HS) have put the basis of the variational 

framework for motion estimation. The variational problems 

consist of two data terms: one is the data matching or data 

fidelity and the other is the smoothness or regularization term. 

The data fidelity term measures the degree of similarity 

between two pixels (or regions) in terms of intensity. It is 

effective at objects’ boundaries because they present important 

features and the best matching is unique here or there are few 

possible matches. For large homogeneous areas, there are 

multiple possible matches and the true flow here inherits the 

flow from boundaries. The variational methods are integrated 

into coarse-to-fine warping strategies in order to detect large 

motion because they rely on the Taylor expansion of the data 

matching term, which is valid only for small displacements.  

 
Manuscript received May 29, 2012, accepted May 02, 2013.  

Copyright (c) 2013 IEEE. Personal use of this material is permitted. 

However, permission to use this material for any other purposes must be 

obtained from the IEEE by sending a request to pubs-permissions@ieee.org. 

This paper was supported in part by the Romanian Agency of Scientific 

Research under Contract PN-II-ID-PCE-2011-3-1086.  

M. Drulea and S. Nedevschi are with the Computer Science Department, 

Technical University of Cluj-Napoca, Memorandumului Str. 28, 400114 

Cluj-Napoca (e-mail: {marius.drulea, sergiu.nedevschi}@cs.utcluj.ro).   

 

A lot of effort went into improving the original variational 

framework. One of the highly investigated directions regards 

the norms used for penalizing the errors. The use of robust 

penalty functions [2-17] defines a non-smooth optimization 

problem, enabling non-smooth solutions and therefore 

preserving the motion boundaries, in contrast to the HS model 

which is smooth and allows only smooth transitions in the 

solution. To overcome the non-differentiability of the robust 

L1 norm, the square root approximation 2| |x x    is 

used in [2-5, 10, 14, 15] and most often in combination with a 

successive-over-relaxation scheme, sacrificing the parallelism. 

The TV-L1 model [6] does not use this approximation and 

incorporates the parallelizable convex dual algorithm 

presented in [18].  

Nagel and Enkelmann [19] have investigated the 

smoothness constraint of the HS model and have proposed an 

anisotropic propagation, decreasing the importance of the 

smoothening in regions with high gradient and favoring the 

propagation inside regions and not across boundaries. 

Recently, Sun [13] and Werlberger [7] have proposed a patch 

based smoothening, known as non-local regularization, by 

extending the traditional  derivatives in constraints. Such a 

constraint enhances the propagation of the flow. 

The matching criteria used for the data term in dense optical 

flow estimation do not vary too much. The simple point-to-

point equality of the intensities [1, 6, 8, 13, 19, 20] supported 

or not by the simple point-to-point equality of gradients [2, 3, 

12, 14, 15] is used in many methods. More criteria might be 

desirable because we want to increase the accuracy and the 

robustness. A common problem that has to be solved is the 

change in illumination, which occurs quite frequently in real-

world applications. One option is to preprocess the images to 

remove the illumination [8, 13, 20]. We can avoid this step if 

we can use a matching function that is invariant to this type of 

perturbations.  

One of the first attempts to improve the data matching term 

is in [4], where the local method Lucas-Kanade (LK) is 

integrated into the HS model. The combined model is 

equivalent to using a SSD intensity matching and it was shown 

to increase the robustness against noise [4, 21]. In terms of 

accuracy, however, the performance of this model is limited 

[21, 22]. In [9], the local window of the combined model is 

weighted by means of bilateral filtering, in order to reduce the 

over-smoothing of boundaries.  

The literature provides sophisticated matching techniques. 

The SIFT detector [23] computes the scale of each feature in a 

first step and then it uses a histogram of oriented gradients to 

build strong descriptors for the involved features. SURF [24] 
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uses sums of wavelet responses to characterize the features. 

The Census transform was proven to be a very good descriptor 

in the context of stereo-vision. In template matching several 

measures applies: SSD (sum of squared differences), SAD 

(sum of absolute differences), ZNCC (zero-mean normalized 

cross-correlation). To summarize, there are two main steps in 

establishing the similarity of two pixels/regions/features: the 

first one is the building of the descriptors and the second one is 

the computation of the “distance” between two descriptors. For 

variational optical flow there are some restrictions however. 

For any matching criteria the overall energy to be minimized is 

non-convex. To find the solution quickly we should 

approximate the energy such that it is convex. This usually 

implies the use of a Taylor linearization and it also requires the 

use of convex “distance” measures. Due to these limitations, 

the integration of the above matching functions into the 

variational framework is not a trivial task. In this paper we 

solve this problem for the ZNCC data term. 

The zero-mean normalized cross-correlation is a strong 

matching function because it is very discriminative, providing 

accuracy. It also offers robustness with respect to illumination 

changes. Later in this paper we explain why ZNCC is more 

discriminative than patch intensity matching. Due to these 

properties, ZNCC is a good candidate in enhancing the data 

matching term. Unfortunately, ZNCC has a more complicated 

form and the direct use of the classical Taylor linearization for 

the input images does not solve the difficulties: from a highly 

non-linear system we would reach another highly non-linear 

system of equations. 

This paper contributes with a fast and reliable optical flow 

system that uses zero-mean normalized cross-correlation as a 

matching measure. We have observed that ZNCC of two 

signals is in fact the SSD distance between the correlation 

transforms of the given signals. Using this interesting property, 

we transform the ZNCC problem into the problem of flow 

estimation between the correlation transforms of the images. 

After this transformation we were able to follow the traditional 

linearization framework. Our approach shows accurate results 

on the online Middlebury evaluation website [25]. 

The paper is organized as follows. Section 2 presents the 

related work. Section 3 introduces the basic notations, the 

mathematical model and our solution to this model. Section 4 

presents the derivation of the corresponding numerical scheme 

and Section 5 discusses related implementation issues. Section 

6 presents evaluations with regard to accuracy and robustness 

with respect to changes in illumination. Finally, Section 7 

concludes the paper. 

II. RELATED WORK 

Four works share similarities with the proposed approach. 

All these works use ZNCC as a matching measure.  

Molnar et al. [26] simplifies the mathematical analysis by 

assuming that the standard deviation of the warped image 

remains constant over the iterative process. However, such an 

assumption is not very realistic, modifies the objective and can 

lead to inaccurate results. We do not make this assumption and 

we solve the exact model.  

In [27], some variants for data fidelity matching are 

presented, including zero-mean normalized cross-correlation. 

The solutions are computed using a search mechanism guided 

by the local flow propagation. The search approach is very 

slow. This model was designed to compare more complicated 

(but useful) matching functions, regardless of the running time. 

Although inaccurate and not reliable, ZNCC has provided 

interesting results on some situations. In contrast to this work, 

our approach provides accurate results and we have found a 

fast, parallelizable optimization scheme. 

Fazekas et al. [28] introduce a method able to handle any 

data term. They define the matching term as a function of two 

variables and analyze how it varies if the flow (the second 

variable) is changed locally. The numerical scheme is not 

completely stable and they use a “step tolerance” to avoid 

instabilities [29]. For some pixels, especially in boundaries, 

the flow has a high value and is completely wrong. To avoid 

these anomalies they clip the flow vectors that fall outside the 

step tolerance window. Without this trick the algorithm 

produces a lot of errors because the errors from the boundaries 

are propagated in all directions. This approach is also slow due 

to the large number of iterations required to converge. The 

method was shown to be quite robust to changes in 

illumination, but not to provide very accurate results.  

Werlberger et al. [7] use the same idea as in [28] to solve 

the truncated ZNCC problem. They further apply a second-

order approximation of the data term in order to meet 

convexity conditions. This approach also needs the step 

tolerance window to solve the instabilities. This method is fast 

and provides very accurate results on the Middlebury 

evaluations. As seen in the online Middlebury evaluation 

website [25], our results are even better.  

In contrast to the above two works  [7, 28], we directly 

solve the ZNCC problem. Instead of analyzing the explicit 

form of ZNCC we exploit the correlation transform of each 

image separately. Therefore, we are able to solve the optical 

flow system using the classical first-order framework. Our 

approach is numerically stable for all values of the involved 

parameters. 

III. THE PROPOSED APPROACH 

   In the followings we present the zero-mean normalized 

cross-correlation matching measure, define an optical flow 

model that uses ZNCC and we derive a solution for this model. 

A. Definitions and notations 

Let f and T be two patches having the same dimension, as 

the ones in Fig. 1. A common metric for measuring the 

similarity of f  and T is SSD: 

 
2( , ) : )(

s

s sSSD f T f T


  , (1) 

where contains the indexes s of each location of the patch.  

The zero-mean normalized cross correlation ZNCC is 

defined as: 

1
)

·

,
( ·,

f T

f T

f T
ZNCC f T

 

 

 
 , (2) 
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where represents the size of the patch, 
X and X are 

the mean and standard deviation of { , }X f T  and 

, represents the standard dot product. If f and T are the 

same, the value of this measure is 1. The best match minimizes 

the expression{1 ( , )}ZNCC f T .  

B. ZNCC data energy for optical flow 

       Let 2

1 2, (: )I I    be two consecutive images 

of a sequence and 2( , ) :w u v   the unknown flow 

between them.  ( , ) |1 ,1x y x N y M      is the 

standard two dimensional Cartesian grid and ( , )N M  

represents the size of the images. Each pixel has a two-

dimensional index i  and a neighborhood denoted as , 

containing the indices around i . The images can take real data 

as arguments, but the values at these locations are computed 

using interpolation. We denote with iw or ( )w i the flow at 

location i , and the same notations are used for all the other 

variables.  

We assume that at a given moment an initial flow estimate 

0 0 0)( ,w u v  is available, and we denote 
2 2 0( ( ))( )I ii w iI   

the warped image. We have to further refine it with the 

displacement 
0

dw w w  in order to match the fixed image 

1I in the sense of ZNCC distance between blocks: 

   2 2 1 1

2 1

(

( ) :

( ) · ( )1
1

( )·

) ( )

( )
i

d

i i

si ii

E

i dw

w

I s dw I i

d iw

s

i

 

  



 




   
 
  

 

 (3) 

In the above formula 1( )i and 1( )i  are the mean and the 

standard deviation of the patch i  around location i  in 

image 1I . The definitions of 2 and 2 are similar. i  

represents the size of the patch i (the sizes are equal). Each 

term of the global sum represents the ZNCC error between the 

patch of the refined image 
2( )iI i dw  and the patch of 1( )I i  

at the given location. We have assumed that the local 

displacement 
idw is constant over the patch around location i .  

The above energy is quite complicated for the traditional 

variational approaches because we have to linearize it and 

have to reach a convex function. Our idea is to express this 

energy as the squared distance between the correlation 

transforms of the images, as described below. 

C. ZNCC as SSD 

In order to solve (3), we use an interesting relationship 

between ZNCC, SSD and the correlation transform. With the 

notations used in section A, the correlation transform of a 

patch f is given by: 

 ,
s f

f

s
f 



 
  

 

 (4) 

We have to compute the mean and the standard deviation of 

the signal f and to replace each sf with the expression (4). It 

is easy to check that the mean of the new patch is zero and its 

standard deviation is one. Therefore, the correlation transform 

maps each patch into a patch with a normal 

distribution ( (0,1))N . 

 , (0,1)
s f

f

N
f

s




   
    

   

 (5) 

Simple computations show that the correlation measure is in 

fact the mean SSD between the correlation transforms: 

  

2

1
· · 1 ( , )2s Tf

fs

s

T

ZNCC f T
f T 

 

 
 


 









 (6) 

Fig.1 shows why ZNCC is more discriminative than SSD or 

SAD. We consider two patches f and T , shown in Fig. 1. a) 

and b). SSD and SAD use the point-to-point difference 

between f andT , which is shown in Fig. 1. c). In this case, 

the differences appear only in the center, where the intensities 

do not match. In the second row, d) and e) represent the 

correlation transforms of f andT , denoted as fC and TC .  

The mean and the standard deviation of the patches are 

different and therefore fC  and TC  are different in every 

point. Fig. 1. f) shows the point-to-point distance between 
fC  

and 
TC . The mismatches appear all over the patch, not only in 

   

a)the first patch f  (1/2 

is black) 

b)the second patch T  

(1/4 is black) 
c) | |f T   

   

d)
fC = the correlation 

transform of f  

e)
TC  = the correlation 

transform of T  

f) | |f TC C  

 

Fig.  1. The first row shows two patches denoted as f and T. The difference 

between f and T, used by SSD and SAD, appears only in the black part of 

c). The second row shows the correlation transforms of the patches and the 

point-to-point distance f) between these transforms in the last column. Now, 

the differences appear all over the patch. Therefore, ZNCC strongly 

penalizes deviations from the correct match. 
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the center. In conclusion, ZNCC penalizes more severe the 

deviations from the correct match, in comparison with SSD or 

SAD.  

D. The correlation’s optical flow 

The relation (6) is useful in defining a special descriptor. For 

each point i of an image I it consists of the values of the 

correlation transform of the surrounding patch:  

 
( )

(
(

:
( )

)
)

, i

I s
C i s

i

i





 
  





 (7) 

Two examples are given in the bottom of Fig 2. Given the 

image 1I  and the warped second image 2I , instead of 

matching the intensities we have to match their 

descriptors 1 2,C C , point-to-point. For each i the refinement 

flow 0dw w w   should satisfy the vector equality: 

 2 1( ) ( )( )C ii w id C   (8) 

Based on this equality, we can define the total matching error 

(or data error) by summing the distances between descriptors: 

 
2

2 1

1
|| ( ( ) ||)i

i i

d C i dw CE i


   (9) 

  2

2

1

1
( ) ( , ),d i

i ki

C iE C kkdw i



  

  
  

   (10) 

where k indexes the components of the descriptor. The above 

matching error is the same as the ZNCC error (3), as deduced 

from the relation (6). The involved descriptors are pre-

computed after each warp and we can ignore their analytical 

form. In this case, we can view the correlation transforms as 

two multichannel images and we have to calculate the flow of 

these channels: the correlations’ flow. The first channel 

1( ,1)C  ( 1)k  for “Teddy” appears in Fig. 2. It collects the 

first value of the descriptor for each point. It has the size of the 

original image, only a part of it is depicted on Fig.2. The data 

matching energy (10) is non-convex. To meet the convexity 

conditions it is necessary to apply a first order expansion, as in 

the traditional optical flow systems.  

 2 1( ), ( , ) 0iC i dw Ck i k    (11) 

The above equality takes place for each position i  and each 

index k of the descriptor. The expansion takes place for each 

component of the vector. 

 2 2 1( , ) ( , ) ( ,· ) 0ii k i kC C d C i kw    (12) 

The term 
2 1( , ) () : ,, )(tC i C i C kk k i  represents the temporal 

gradient. A common practice in implementations is to blend 

the derivatives [20]:  
2 1( , ) ( , )) : ( ), /( 2i k i kC i k C C     

is used instead of 2( , )C i k . Other settings for this blending 

are also possible. With these notations the equality now reads: 

 ( , ) ( , )· 0t iC i k C i k dw   (13) 

That last equation expresses the residual at location i and 

index k . After the linearization the total matching energy error 

is a convex function: 

  
2

0,( , )( ) )( , )·(d t i i

i k

C i k C i kw wwE


  (14) 

The second part of a variational optical flow system is the 

regularization. The regularization term is responsible for the 

propagation of the optical flow from boundaries, where the 

descriptors are effective, to homogenous regions. This 

propagation relies on the spatial coherence of natural images. 

The pixels belonging to the same object have almost the same 

flow; their flow is almost constant, at least on sub-regions. The 

deviations from this constancy assumption are penalized by the 

following smoothness error: 

 
 

, 1

, ,

( ) ·

· ·

i

i

smooth i s s i

s

i s s i i s s i

s

i w w

u

E bf

bf u bf v v





 

   




 (15) 

Here ,i sbf  measures how likely the pixels i and s  belong to 

the same object. If s  is in the neighborhood of i  and if their 

colors are the same then probably i and s belong to the same 

object and ,i sbf is close to 1. Otherwise this measure is close 

to zero, ignoring that pixel.  

The last error (15) is zero in the ideal case and says the 

following: if s  belongs to the same surface as i , than their 

 

    
 

Fig. 2. Visualization of the correlation transform. Top: window positions in 

the original image. Bottom: close-up view of the 71x71 patches and their 

correlation transforms. Top image, right bottom: a part of the first channel of 

the 3x3 correlation transform. The output of the correlation transform was 

remapped from the original range into [0 1]. 
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flow should be the same ( 0s iw w  ). The total 

smoothness error is: 

 , 1
( ) ·

i

s i s s i

si

E w b w wf
 

  (16) 

The bilateral filter [30, 31] formalizes the similarity between 

two locations. It was used in image de-noising, stereo-vision 

applications [32], and recently, in the context of optical flow 

[7, 9, 13, 33]. 

 

2 22

( , ) ( , )

,

2

c d

c d

i s i

i

s

sbf e
 

  
  
 
  , (17) 

where , )(c i s represents the distance between the colors of i  

and s  computed in the Lab color space, 
2( , ) || ||d i s s i    

is the distance between the positions. The parameters c  and 

d  control the similarity measure. The bilateral filter is the 

product of two types of Gaussian kernels: a color (or intensity) 

kernel and a distance kernel. An illustrative example is 

provided in Fig. 4. The weight of a pixel decreases as the 

distance from the center increases. In addition, the weight 

decreases if the intensity of the pixel is different from the 

center’s intensity.  

The discrete smoothing energy error defined in (15) is 

known in the literature as non-local regularization [34, 35]. 

The latter was inspired by the neighborhood filters [31, 36, 

37], which were used in the context of image denoising and 

deblurring. Recently, the idea of non-local regularization was 

also used for optical flow in [7, 13]. It uses the 1L robust 

penalty function in order to allow sharp solutions and to 

preserve the motion’s discontinuities. 

In order to recover the optical flow we have to minimize 

both the matching error ( dE ) and the smoothness error ( )sE , 

and this is usually expressed in the literature as a combined 

energy: 

 ( ) ( )· ( )d sE w w wEE  , (18) 

where   controls the amount of regularization.  

The next section covers the minimization procedure of the 

resulted energy. 

 

IV. THE OPTIMIZATION PROCEDURE 

The functional sE in (16) is non-smooth, but it is a convex 

function. Let us now consider a higher dimensional space 

2 | |x x
, where | |  is the size of the neighborhoods 

i , and a linear operator 
2 | |2

:
x x x

K
 
  

(1,1) (1,1) (1

( ,

,1)

( , )) ( , )

: ...

s s

s N M s N NM M

w w w s

Kw

w ww

w

w s

 

 

  
 

  
  

(19) 

For each row representing the location i , s  spans the values 

of the neighborhood i  (as in (15)). Using this notation the 

smoothness term can be represented in a more compact form: 

 ( )sE F Kw , (20) 

where 
2 | |

:
x x

F


  is the function defined by 

1( ) : || · ||F y bf y                  (21)   

The argument y has two components: ( , )y yu yv . The 

bilateral filter bf and the components yu , yv  are matrices in 

| |x
 and the multiplication in the function takes place 

element-by-element: , , , , , ,· ·,( · )i s i s i s i s i s i sy bf y bfu yvbf  .  The 

expanded form of F  is: 

  , , , ,( ) | || · |·
i

i s i s i s i s

si

F y bf byu yvf
 

   (22) 

Substituting , ,) , )( (i s i s s i s i s iy Kw w w u u v v       

in the above formula, we obtain (20).  

Using these notations, the optical flow energy error to be 

minimized now reads: 

  min ( ) ( )· d
w

w F wE K   (23) 

In the following we present a minimization scheme based on 

the projected-proximal-point algorithm (PPA). It can be found 

in [38-41], but we also present its principle for completeness 

and for clarity.  

Projected proximal point strategy 

The discretized optical flow problem (23) is convex in w . 

The data term ( )dE w  is differentiable and the only issue is 

the smoothness term. The function F  is quite simple, but the 

operator K introduces the complications and the idea is to 

eliminate it, by means of duality as below: 

   *min ,· ( ) max ( ) ,d
qw

E w K F qw q   
  

(24) 

where , is the standard dot product of the space 
2 | |x x

 

and 
*F  is the convex conjugate of F , given by: 

*

,

0,
( )

otherwise

q Q
qF









   (25) 

The convex set Q  is given by 

 

2 | |

, , ,

, , , ,

( , ),:

, ,

x x

i s i s i s

i s i s i s i s i

q qu qv

bf

q
Q

qu bf iqv s


 





 

 
  
    

(26) 

This dual-optimization problem (min, max) can be combined 

into a single one with multiple variables.  

  *· ( )min max ( ) ,d
w q

wE FKw q q    (27) 

Min and max can be swapped because the min-max theorem 

[42] holds here. The problem is convex in the primal variable 

w  and is concave in the dual variable q . 
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The proximal point strategy [38-41] implies the min-

maximization of the following function, denoted as ( , )w q : 

* 2 21 1
| ||| || ||

2 2
· ( ) ( ), ,k k

d w w q qE w F qKw q
 

    (28) 

where ,k kw q  are the results from the previous estimate. The 

idea is to find a point 
1 1,k kw q 

 which is as close as possible 

to the optimum and not too far from the previous estimate. The 

parameters ,  control the proximity to the previous 

estimations ,k kw q . This objective is also convex-concave, as 

the original. The new estimates are the solutions of the 

problems: 

 

1

1 1

arg min ( ,)

arg ma

)

( , )x)

k k

w

k k

q

a w w q

b q w q



 







 




 (29) 

As can be seen in the above equalities, in order to find one 

variable the other is kept fixed. (29) b) is a point-wise problem 

in q . Also, (29) a) is a point-wise problem in w due to the 

property , , Tk kKw q w K q , where TK is the adjoint 

operator of K . The exact expression of T kK q can be easily 

deduced from this property. Since  is differentiable, the 

gradients of the functions in (29) are zero in the desired points: 

1

1 1 1

) ( , ) 0 · ( )

) ( , ) 0 ( )

k T k kd

k k k

E
a w q K q w w

w w

b w q Kw q q
q

 





  


      




    


 (30) 

There results a linear system of equations (a) in every 

,( )i i iw u v , which is very simple to solve. Their explicit 

form is not included, in order to save space. The only unsolved 

issue is how to keep the variable q  in the proper set Q , 

because the solution derived from the gradient does not 

guarantee this. In fact, we have to find a point in the set Q that 

maximizes the objective (in q ). The desired point is the 

projection of the gradient solution onto Q . The following 

relation on ( , )z zu zv  defines this projection:  

 ·Pr( ) ( , )
max(| |, ) max(| |, )

·
zu zv

z bf bf
zu bf zv bf

  (31) 

All operations are element-wise. If z  is in Q , the projection 

leaves it unchanged, otherwise z is normalized such 

that , ,| |i s i sbfzu  , , ,| |i s i sbfzv  , in accordance with the 

definition of Q (26).  

Very simple computations of the gradient equations (30) and 

the use of projection onto Q  lead to the final numerical 

scheme that solves the considered optical flow model: 

 

1

1 1

sol. of linear system) (w , )

) P

,

r( )

,k k T k

k k k

a w K q

b q Kwq

 





 

 


 
(32) 

An approximate interpretation is that the algorithm performs a 

gradient descent operation in the primal variable w (convex) 

and a gradient ascent operation in the dual variable q  

(concave), but the scheme provided (32) is better because it is 

semi-implicit (
1kq 

 depends on 
1kw 
). 

2) Set up pyramids 
1 2,I I .  

3) For each level starting with the coarsest (below, each referred variable 
is at the current level) 

a) If the coarsest level, then initialize ,w q  to zero. 

b) If not, upsample ,w q  from the previous level to the current 

level. 

c) Computes the bilateral coefficients using the first image 1I in 

the Lab color space. 

d) Compute the correlation transform of the first image
1I  

e) for i = 1 to warps (apply the warping technique) 
i) Apply a median filter to ,u v in order to avoid strong outliers. 

ii) Warp the second image 
2I  and compute the correlation 

transforms necessary for the temporal and spatial 
derivatives (12), (13) 

iii) For k=1 to eq_iterations (find the minimum of (23)) 

A. Primal step: update w  using (32), a) 

B. Dual step: update q  using (32), c) 

Fig. 3 The sequence of the performed operations 

 
a) The patches and the bilateral weights on each level for bilinear 

resampling 

1 1/2 1/4 1/8 

    

    
 

b) The patches and the bilateral weights on each level for bicubic 

resampling 

1 1/2 1/4 1/8 

    

    
 
Fig. 4. The neighborhood and the coefficients of the bilateral filter for the 

left soldier in “Rubber Whale”, after bilinear resampling (the first two 

rows of images) and after bicubic resampling (the next two rows of 

images), for each level of the pyramid. The bicubic resampling leads to an 

oversmoothing of the flow in the lower levels.  The bilinear resampling 

preserves the object’s boundaries. For these images we have considered 

only the distance between colors in the bilateral filter. 
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V. IMPLEMENTATION 

Like all variational approaches, the presented model relies 

on the Taylor approximation of the data matching term. It is 

integrated into the well-known coarse-to-fine warping strategy 

in order to cope with large displacements. The sequence in 

Fig. 3 shows the main steps performed.  

We use bilinear interpolation to build the pyramids and 

bicubic interpolation for upsampling the flow. We have also 

tried the bicubic downsampling, but it affects the bilateral 

coefficients. It considerably mixes the intensities and disturbs 

the boundaries and the local properties of an object. An 

illustrative example is given in Fig. 4. For bicubic resampling 

Fig. 4. b), the coefficients on the coarser levels (1/2, 1/4, 1/8) 

do not delimitate the object from background, the differences 

are hardly seen, causing an oversmoothing of the flow on these 

levels. The bilinear resampling Fig. 4. a), separates the object 

from other pixels. The use of antialiasing when downsampling 

also mixes the intensities and causes oversmoothing in some 

situations. Finally, we have chosen bilinear downsampling for 

building the pyramids and an additional pyramid for 

computing the bilateral weights. This additional pyramid still 

uses bilinear downsampling, but with no antialiasing on fine 

levels. On coarse levels, antialiasing is employed. This setting 

depends on the number of levels. For a pyramid factor of 0.5, 

we don’t use antialiasing for the level 2 of the pyramid. 

For the computation of the derivatives we have used simple 

finite differences. At location ( , )i x y and index k in the 

descriptor we have: 

 

2 2

2

2 2

(( 1, ), ) (( 1, ), )

2
(( , ), )

(( , 1), ) (( , 1), )

2

T

C x y k C x y k

C x y k
C x y k C x y k

   
 
  
   
 
 

(33) 

The quantity 2(( 1, )){ : ( , ) }x y x yC    

represents the correlation transform of the image  

    2 0 0( , ) : (( , ) 1 , ) ,( )x u y vI x y x y x y   which 

is computed by means of interpolation. We do not warp the 

correlation transform of the second image. Instead, we warp 

the second image and we recompute the correlation 

transforms. Therefore, five interpolations and transforms take 

place at each warp: 4 for space derivatives in equation (33) 

and one for the temporal derivative in equation (13). The cubic 

interpolation was used to warp the second image, as 

recommended in [13]. We use a median filter of 3x3 before 

each warp. 

 The developed numerical scheme is highly parallelizable 

and the implementation on CUDA architectures is 

straightforward.  

VI. RESULTS 

For ground truth evaluation we turn to the Middlebury  

datasets [22]. Two types of evaluations are provided in order 

to measure the accuracy: the average endpoint error (AEPE) 

and the average angular error (AAE). We have used a pyramid 

factor of 0.5, 5 warps per level and 30 iterations per warp. We 

have set to 5x5 the size of the neighborhood for non-local 

propagation. Based on visual inspections of the bilateral 

coefficients for various points (an example is in Fig. 4. a)) we 

have set 7, 7c d   . With these values, the bilateral 

coefficients look very natural (see Fig. 4. a)). A larger 

neighborhood might be beneficial, as shown in [7, 13], but we 

restrict this dimension in order to keep the running time in a 

reasonable range. In this paper we are more interested in the 

evaluation of the cross-correlation as matching measure. We 

have to determine the optimal window size for ZNCC and the 

optimal . The Middlebury training dataset contains eight 

pairs of images and we compute the mean AEPE and AAE 

over all these frames. For ZNCC window size we have tested 

three configurations: 3x3, 5x5 and 7x7. For each configuration 

we vary the values of  from 3 to 40. Fig. 6 plots the 

evolution of the AEPE and AAE. The plots reveal that 3x3 is 

the optimal configuration and the best value for  is between 

11 and 13. We have chosen 12   as the optimal weighting 

between the data term and the smoothness term. Fig. 5 shows 

the color encoded output of the optimal configuration for these 

semi-synthetic images. With these settings, the running time of 

our Matlab implementation for “Rubber Whale” was 150 

    
a) Rubber Whale (0.08/2.65) b) Urban 2 (0.29/2.92) c) Grove 2 (0.15/2.13) d) Dimetrodon (0.21/4.54) 

    
e) Hydrangea (0.17/2.03) f) Urban 3 (0.50/4.75) g) Grove 3 (0.55/5.64) h) Venus (0.26/4.02) 

 
Fig.  5.  Flow results on the training sequences of the Middlebury dataset. The corresponding AEPE and AAE are shown in brackets (AEPE/AAE). 
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seconds. Remarkable for the ZNCC data-term are the outputs 

of “Rubber Whale” (the hole in the central circle, the 

shadowed region between the wheel and the blue figure on the 

left) and Venus (the central bottom part). 

Our method, denoted as “Correlation Flow”, is present on 

the Middlebury evaluation website. At the time of submission, 

“Correlation flow” was ranked 8 for the endpoint error. There 

were a total of 79 methods. The related method “NL-TV-

NCC” [7] was ranked 28. The other related methods [26-29] 

were not listed there. Fig. 7 shows the results of our method 

for the Middlebury datasets with hidden ground-truth and 

Fig.8 shows a snapshot of the online Middlebury list. We have 

obtained good results, especially for “Wooden” (rank 2), 

“Teddy” (rank 4), “Mequon” (rank 4) and “Urban” (rank 10). 

The real-world images are more complex than the semi-

synthetic images provided by Middlebury. A common problem 

is represented by the changes in illumination. This occurs 

when the system’s camera changes its relative orientation to 

the sun (it takes a left or a right turn) or when it enters a 

shadowed/spotted region. In addition, the cameras might 

change their internal settings by modifying the gain or the 

exposure time. The first two scenarios in Fig. 9 depict such 

situations. In order to further reveal the advantages of ZNCC 

against other data terms we have applied non-uniform 

illuminations to the Middlebury pairs RubberWhale (third 

column) and Grove3 (last column). For RubberWhale we have 

modified the intensities of the second image using the formula: 

 
22 5 1 22 5· ·( · (( ) ))( ) I i iI i  , where

2

0 / 6000) ( )( ii exp i    

 

 
 

Fig.  6. The evolution of AEPE and AAE. Top: AEPE. Bottom: AAE. 

 

    
a) Army b) Mequon c) Schefflera d) Wooden 

    
e) Grove f) Urban g) Yosemite h) Teddy 

    
i) Backyard j) Basketball k) Dumptruck l) Evergreen 

 
Fig.  7.  Flow result on the Middlebury sequences with hidden ground-truth. 
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and 
0 (280, 250)i   ( 0i corresponds to the central circle). We 

have also normalized the result to keep the intensities in the 

range [0,1]. This modification makes lighter the region around 

location 0i , while the rest of the image becomes darker. It is 

similar to using two light sources: the intensity of the main 

light is reduced in order to have a darker image, while the 

second source of light is focused around location 0i  and has a 

higher intensity. We have applied similar formulas for the red 

and for the blue channels of the Grove image, producing a 

green image with two spots of light, as seen in Fig. 9 last 

column, second row. Four other methods are selected for 

comparison. The first method is obtained from our framework, 

by replacing ZNCC with SSD. SSD fails on all selected 

scenarios. The second method, Classic+NL[13] uses an 

intensity based data term and a preprocessing step to remove 

the illumination changes. LDOF[14] uses the brightness 

constraint assumption (BCA) and also the gradient constraint 

assumption (GCA). GCA is useful because it is invariant to 

additive multiplication changes. In addition to these two data 

terms, LDOF uses a large-displacement detector, based on 

HOG-like descriptors, which is also invariant to changes in 

illumination.  As seen in Fig. 9, ZNCC is more robust than 

LDOF w.r.t. changes in illumination. MDP-Flow2[12] also 

uses BCA and GCA, but it selects the best between these 

constraints. At each level SIFT vectors are employed to help 

the initialization of optical flow. From these four selected 

methods MDP-Flow2 produces the best results (Fig. 9, Table 

I).  However, the differences between the original errors and 

the errors after applying the illumination are higher than in the 

case of ZNCC. As seen in Table I, ZNCC is almost invariant 

to the considered illumination change, the errors have 

increased only a bit.  
TABLE I 

ERRORS (AEPE, AAE) BEFORE AND AFTER THE CHANGE IN ILLUMINATION 

Method RubberWhale RubberWhale + 

illumination 

Grove3 Grove3 

+illumination 

Correlation Flow (0.08, 2.65) (0.08, 2.81) (0.55, 5.64) (0.56, 5.64) 

SSD (0.13, 4.37) (63.4, 68.2) (0.73, 6.71) (52.3, 78.6) 

Classic+NL[13] (0.07, 2.40) (29.6, 66.3) (0.46, 4.92) (9.25, 31.7) 

LDOF [14] (0.12, 4.23) (0.62, 17.2) (0.69, 6.38) (2.60, 25.5) 

MDP-Flow2 [12] (0.08, 2.51) (0.14, 4.29) (0.46, 4.87) (0.55, 5.79) 

VII. CONCLUSIONS 

We have presented a direct approach to optical flow 

estimation with zero-mean normalized cross-correlation 

(ZNCC) as matching measure. The approach exploits the 

equivalence between the ZNCC and the SSD distance between 

the correlation transforms. We have shown that ZNCC is better 

than patch intensity matching (SSD or SAD). The deviations 

from the correct match between two regions are penalized 

stronger by ZNCC. The model employs a non-local 

propagation mechanism that uses a robust penalty in order to 

preserve motion boundaries. The bilateral filter guides the 

propagation process. The involved optimization problem is 

associated with a suitable numerical scheme derived using the 

projected proximal-point strategy. The numerical scheme is 

fast and highly parallelizable and directly fits to the 

programming capabilities of today’s graphic processing units. 

The experiments showed a very good robustness of ZNCC 

even in cases where severe illumination changes are present. 

The discriminative power of ZNCC and its invariance to 

illumination changes have led to highly accurate results on the 

Middlebury evaluations, both for the test and the training 

datasets. 
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