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Abstract - This paper will present a method for grouping 
3D points into cuboids. The 3D points are extracted using 
multiple stereovision sensors, and the sensor fusion module 
performs the fusion of the data sets and the grouping of the 
points in a single algorithm. The fusion/grouping algorithm 
is scalable, being able to work using any number of sensors, 
including a single one. The grouping method relies on a 
method of transforming the 3D space so that the density of 
the points is kept constant, and all the points belonging to a 
single object are adjacent, making the grouping of points 
into cuboids a simple labeling problem. 
  
Keywords: stereovision, data fusion, feature grouping, 
communication, distributed computation. 
 
1 Introduction 

Stereovision is a well-established technique for 
extracting 3D information from images. This technique is a 
passive approach, which does not interfere with the 
observed environment, unlike other ranging sensors (radar, 
laser), and provides a much richer information set. The 
limitations of stereovision are the ranging precision and the 
cumbersome calibration methodology. The stereovision 
sensor provides a set of 3D points, which are not noise-free. 
The most difficult problem is to group these points into 
meaningful objects – a problem which affects all ranging 
sensors. 
 

Each stereovision sensor is limited by its own field of 
view. A complete description of a 3D scene is difficult to be 
achieved by only one sensor, due to the sensor’s position, 
occlusions of the objects, the limited range of operation, etc. 
For that reason, fusion of information from several sensors, 
placed strategically around the scene is necessary. 
 

Several approaches for 3D points grouping are 
available in literature. In [8] the point grouping algorithm 
works mainly in the 2D image space, stereovision being 
used to extract the depth of the image points. In the image 
space, points are connected if they are in the 4-nearest 
neighbors relationship. In the depth space, the points are 
connected if the difference in depth is less than the depth 
uncertainty, which is a variable error resulted from a fixed 
disparity error of 0.5 pixels.  

Another approach for 3D points grouping is presented 
in [3]. They use spatial coherence to identify regions from 
the depth information. First, they are looking for connected 
components in the 8-neighborhood of the image dimensions. 
In the depth dimension a neighboring pixel is connected if 
the difference in depth is less than a threshold. In the 
grouping process an object could be split into different 
disjoint regions. If two regions belong to the same object, 
they must be close to each other in 3D space. For each pair 
of regions a probability measure gives the likelihood that the 
regions belong to the same object. 
 

Specific object shapes fitting algorithms as the L-Fit 
[2] are trying to group objects using L-shapes matching. The 
assumption in this case is that the correlated 3D points of an 
object with rectangular horizontal section, viewed from one 
side have an approximately L-shape in the depth map 
(ground plane projection). 
 

The grouping algorithm presented in this paper works 
by compressing the 3D space in a way that the point density 
is preserved with the distance, and the points corresponding 
to the same object are neighbors. The compressed space 
map is different for each sensor, but then the points are 
mapped in a common uncompressed 3D space, preserving 
the adjacencies in the compressed space, and fused together, 
and then grouped into objects by a simple labeling 
algorithm. In this way, both of the problems, the grouping of 
the points and the fusion of sensor data, are solved in the 
same algorithm. 
 
 Another sensor fusion algorithm was proposed in [6]. 
The point grouping is performed at sensor level, and the 
fusion algorithm fuses the intermediate cuboids into final 
ones, on the basis of a confidence measure of the cuboids’ 
corners. 
 
2 The sensorial system architecture  
  The architecture of the sensorial system is presented in 
fig. 2. 
 The system consists of “n” Stereovision Sensors linked 
by TCP connection to the Sensor Fusion Module (SFM). 
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Figure 1. The architecture of the sensorial system 

 
 The Stereovision Sensors must be placed around the 

space of interest in such a way that a good coverage of the 
scene is accomplished. This way, each sensor has a different 
view of the 3D scene, and issues as hidden object facets or 
object occlusions are easier to treat.  
 
 A Stereovision Sensor consists of a pair of cameras, 
mounted on a rig, linked to its image processing computer. 
The image processing computer performs stereo 3D 
reconstruction cycles on the synchronously acquired image 
pairs. The reconstructed 3D points represent the sensor’s 
output. 
 
 Each stereovision sensor must be calibrated before 
operation. The calibration will be performed with respect to 
a unique world coordinate system, so that each set of 3D 
points delivered by a sensor expressed in the same 
coordinate system, thus making the fusion easier. 
The Sensor Fusion Module (SFM) is the central module of 
the method. This computer receives the information from all 
stereovision sensors, in the form of 3D point sets, and 
performs their fusion and grouping into objects. The SFM 
knows the camera parameters of each stereovision sensor. 
This information is needed in the point fusion algorithm. 
 
 The SFM acts like the synchronization master for the 
sensor array, ensuring that all sensors capture the scene at 
the same time. It is also responsible for delivering the 
information to client applications. The result is delivered in 
the form of 3D cuboids expressed in the unique world 
coordinate system. 
 
3 Stereovision sensors calibration 
 In order to reconstruct and measure the 3D environment 
using stereo cameras, the cameras must be calibrated. The 
calibration process estimates the camera’s intrinsic 
parameters (which are related to its internal optical and 
geometrical characteristics) and extrinsic ones (which are 
related to the 3D position and orientation of the camera 
relative to a global world coordinate system). 

 The intrinsic parameters of each camera are calibrated 
individually. The estimated parameters are the focal length 
and the principal point coordinates and the lens distortions. 
The parameters are estimated by minimizing the projection 
error from multiple views of a set of control points placed 
on a coplanar calibration object with known geometry. For a 
stereo system of two cameras, the obtained intrinsic 
parameters can be refined by inferring the stereo 
information available. This is done by introducing a new 
constraint in the estimation process which considers also the 
projection error of the control points image coordinates 
from one image to another [1]. 
  
 For the benefit of the point fusion algorithm the 
calibration of the extrinsic parameters must be performed in 
the same coordinate system (a unique coordinate system 
belonging to the scene), and must be very precise. If the 
precision requirements are not met, the set of points from 
different sensors will have different meaning, and their 
fusion will be erroneous.  
 
 The extrinsic parameters of the cameras are estimated by 
minimizing against the extrinsic parameters the projection 
error for a set of 3D control points with measured 
coordinates in a world reference system [4, 5]. For the 
specific setup of the current application having multiple 
stereovision sensors, each stereo pair of cameras is 
calibrated using a set of control points measured in a unique 
world coordinate system - the coordinate system of the 
scene (Figure 2). 
 
 The obtained extrinsic parameters for each camera “j” 
are a translation vector of the camera in the world 
coordinate system (Tj) and a rotation vector (Rj) relative to 
the same coordinate system. This approach in the calibration 
process allows us to measure the coordinates of the 
reconstructed 3D object in the same world coordinate 
system, which is essential for the sensor fusion algorithm. 
 

 
 

Figure 2. Calibration setup for calibrating the extrinsic 
parameters 
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4 Stereo 3D reconstruction 
 The stereo reconstruction algorithm used is mainly 
based on the classical stereovision principles available in 
the existing literature [7]: find pairs of left-right 
correspondent points and map them into the 3D world using 
the stereo system geometry determined by calibration.  
 
 Constraints, concerning real-time response of the system 
and high confidence of the reconstructed points, must be 
used. In order to reduce the search space and to emphasize 
the structure of the objects, only edge points of the left 
image are correlated to the right image points. Due to the 
cameras horizontal disparity, a gradient-based vertical edge 
detector was implemented. Non-maxima suppression and 
hysteresis edge linking are being used. By focusing to the 
image edges, not only the response time is improved, but 
also the correlation task is easier, since these points are 
placed in non-uniform image areas.  
 
 Area based correlation is used. For each left edge point, 
the right image correspondent is searched. The sum of 
absolute differences (SAD) function [9] is used as a 
measure of similarity, applied on a local neighborhood (5x5 
or 7x7 pixels). Parallel processing features of the processor 
are used to implement this function. The search is 
performed along the epipolar line computed from the stereo 
geometry. Two modes are used: image rectification, search 
along the horizontal line or without rectification and the 
search is performed along the epipolar line determined by 
the system geometry.  
 
 To have a low rate of false pairs, only strong responses 
of the correlation function are considered as correspondents. 
If the global minimum of the function is not strong enough 
relative to other local minimums, the current left image 
point is not correlated. Repetitive patterns are rejected and 
only robust pairs are reconstructed. 
 

 
 

Figure 3. Linear piecewise approximation of the correlation 
function for 5 points. Two parabolas fitted to 3 and 5 

neighbors are presented. The sub-pixel displacement d for 
the 3-neighbors parabola is shown. 

 
  To achieve a better 3D depth resolution, the sub-pixel 
right correspondent is computed by fitting a parabola to the 
correlation function [9]. The parabola is fitted to a local 
neighborhood (3 or 5 points) of the global minimum. The 

accuracy obtained is about 1/4 to 1/6 pixels. This accuracy 
is dependent of the image quality (especially noise and 
contrast). Our tests proved that the 3-neighbors parabola 
works better than the other one. 
 
 After this step of finding correspondences, each left-
right pair of points is mapped into a unique 3D point [7]. 
Two 3D projection rays are traced, using the camera 
geometry, one for each point of the pair. By computing the 
intersection of the two projection rays, the coordinates of 
the 3D point are determined. The reconstruction formulas 
are simple, when image rectification is used, or complex, if 
the original images are used for correlation.  
 
 While image rectification provides a simple search area 
for correspondents and straightforward 3D reconstruction, 
the general geometry mode, without rectification, provides a 
better resolution since no image re-sampling is done. 
 
5 Sensor fusion algorithm 
 The sensor fusion algorithm takes care of two problems: 
merging the set of points into one global view of the scene, 
and grouping those points into objects. The reason that 
prevents a simple union of the point sets is that the density 
of the 3D points reconstructed by stereovision is not 
constant with the distance from the camera. Therefore, the 
points in a region can have different densities, depending of 
the stereovision sensor that generated them. 
 
 The first step of the grouping algorithm is to select the 
points that are above the ground level. This selection can be 
direct, if the parameters of the ground surface are known (if 
the sensor is fixed with respect to the scene), or it can follow 
a ground detection routine, if the sensors are mobile.  
 
 For each sensor we’ll map the points into a space of 
even density. However, because the density depends of the 
position of the point with respect to the stereovision sensor 
that generated it, we have to make the transformation in the 
sensor’s coordinate system. Without losing the generality, 
we’ll consider the coordinate system of the sensor j to be 
defined by the rotation matrix Rj

L and Tj
L of the sensor’s 

left camera. The transformation that maps the world point 
(X,Y,Z) into the coordinate system of the sensor j is: 
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 The points in the coordinate system of the sensor j will 
then be mapped into a compressed space, which accounts 
for the difference in point density with the distance from the 
camera. 
 The formulas used to find the position (row, col) in the 
compressed space, of a point (X,Z) in the uncompressed 
space, are: 
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where Zmin is the lowest distance boundary for the space of 
interest, f is the focal length of the cameras, and k is a  
factor which depends on the richness of 3D reconstructed 
points with the current reconstruction method. For the X and 
Z axes the values for k can be different. The k factors are 
chosen to satisfy two conditions of the found objects: 
- to not divide a real object into more smaller objects; 
- to not unify more real objects into a bigger object. 
 
 The XZ plane of the 3D space is mapped into a 
compressed space, as shown in the figure 4: 
 
 

 
Figure 4. Compressing the space to obtain an even point 

distribution 
 

 Figure 5 shows the results of applying the compression 
on the cluster of points belonging to the same object. The 
points in the 3D space are very sparse, while the points in 
the compressed space are joined together. 
 

   
 a)       b) 

Figure 5. Results of applying compression on a cluster of 
points belonging to the same object 

 
 The grouping of the points in the compressed XZ plane 
can be viewed as a simple labeling: the connected clusters 
of points are grouped into top-view objects. However, we 
cannot fuse together the points of different sensors, 
represented in the compressed spaces, because of the 
different coordinate systems. Therefore, we take the points 

from the compressed space and map them back in the real 
world XZ plane, but this time we take care to fill the gaps.  
 The algorithm that does that is the following: 
− Define a grid of n rows and m columns which is a 

linearly scaled and discrete representation of the XZ 
plane. Let’s call this space the Connected 3D space 

− For each r and c in this space, perform the following: 
− Compute the corresponding X and Z 
− Compute the corresponding Xj and Zj 
− Find the position in the compressed space of 

sensor j 
− If the position in the compressed space is not 

null, mark the position in the grid 
 
 This algorithm obtains a top-viewed scaled 3D space, in 
the unique world coordinate system, but having the 
important property that the points maintain the connection 
property. 
 

            
a)                                         b) 

Figure 6. Comparison of the point density between the 
original point distribution in the world coordinate system (a) 

and the point distribution in the Connected 3D Space (b). 
View (b) is a linearly scaled down and discrete 
representation of the space in a bird-eye view 

 
 The connected 3D space allows us to use the same 
simple labeling algorithm for joining the points into distinct 
objects. However, this space has one more important 
property: the entries in the connected 3D spaces of each 
sensor can be simply added up to form the fused connected 
3D space of the whole scene, if the camera calibration 
procedure was properly performed. 
 

    
a)    b) 

Figure 7. The connected 3D space view of the same object 
from two different sensors 
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 Each of the sensor’s view of the scene is incomplete. 
Each sensor can bring supplementary information for the 
scene reconstruction, enlarging the field of view of the 
vision system. If an object is viewed by more than one 
sensor, the data from each sensor is added into a better 
description of the object. By combining the connected space 
results of each sensor into a single connected space 
description of the scene, we achieve both objectives: the 
different parts of the scene, visible to only some of the 
sensors, are combined together, and the information about 
the same object, coming from different sensors, is added up. 
Figure 7 shows two views of a single object.  
 
 We may notice that none of them views the object as a 
single cluster of connected points – and thus we’ll obtain 
incorrect results. Figure 8  shows the result of adding up the 
data from the two sensors. The points which form the object 
are now all connected, and they will receive the same label. 
 

 
 

Figure 8. Result of adding the connected space information 
from two sensors in the case of the same object 

 
 The regions which result from labeling are size filtered 
so that only the ones large enough are kept. This way we 
increase the robustness of the result. 
 
 The extraction of the 3D characteristics of the cuboids is 
performed using the original sets of points (in the real 3D 
coordinate system). The sets of 3D points obtained from all 
the stereovision sensors are united in a single set. For each 
point the algorithm computes its coordinate in the connected 
3D space, and checks the label present at these coordinates, 
which gives the identity of the object to which the 3D point 
belongs. Each object will have its own list of 3D points. By 
computing the minima and maxima of each coordinate of 
these points, the limits of the 3D cuboid are extracted (Xmin, 
Ymin, Zmin, Xmax, Ymax, Zmax). 
 
6 Results 
 For testing of the algorithm we have used two 
stereovision sensors, which were calibrated using the 
method described in the calibration section, using a 
common coordinate system.  
 
 The stereovision-extracted 3D points were sent to a 
fusion computer, using a standard networking protocol. The 

algorithm of sensor fusion and point grouping was applied 
in three cases: using only the first sensor, using only the 
second sensor, and using both sensors. Because of the 
generality of the algorithm, there was no need to program 
these three types of operations differently. 
 
 The results of point grouping using only one sensor are 
presented in the figure 9. The objects are only partially 
reconstructed, due to the limits of the point of view and the 
partial occlusions. Splitting of an object in two components 
can be also a problem, as shown in figure 9, b). 
 
 The results of the sensor fusion algorithm are shown in 
figure 10. The same results are projected in the left image 
plane of both stereovision sensors, for a qualitative 
comparison and analysis. The results of the fusion show a 
clear improvement of the detection. 
 
 

 
a) Sensor 1 

 

 
b) Sensor 2 

 
Figure 9. Object detection using a single stereovision 

sensor.  
 
 

7 Conclusions 
 A method for spatial grouping of 3D points resulted 
from multiple stereovision sensors was presented. The 
algorithm treats the problem of point grouping and of point 
fusion in the same time. The main problem that needed to be 
faced by the system was the uneven distribution of the 3D 
points generated by stereovision, distribution which needed 
to be compensated before joining the point sets and 
grouping them into objects. After the distribution was 
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compensated and the sets fused, the grouping became a 
simple problem of point labeling. 

 

 
a) Fusion result projected on the left camera of sensor 1 

 

 
b) Fusion result projected on the left camera of sensor 2  

 
Figure 10. Results of the sensor fusion 

 
 The results were conclusive: multiple views of a scene 
generate better detection, and a larger field of view. The 
accuracy of the calibration process, which is performed with 
respect to a unique coordinate system, is essential to the 
success of the fusion routine. 
 
 The algorithm has a high degree of generality. The same 
grouping routine works the same with any number of 
sensors, including a single one. This provides a better 
resistance to errors, and also a great possibility for system 
extension. 
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