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Abstract—Traditionally sub-pixel interpolation in stereo-vision 

systems was designed for the block matching algorithm. During 

the evaluation of different interpolation strategies a strong 

correlation was observed between the type of the stereo algorithm 

and the sub-pixel accuracy of the different solutions. Sub-pixel 

interpolation should be adapted to each stereo-algorithm to 

achieve maximum accuracy. In consequence it is more important 

to propose methodologies for interpolation function generation, 

than specific function shapes. We propose two such methodologies 

based on data generated by the stereo algorithms. The first 

proposal uses a histogram to model the environment and applies 

histogram equalization to an existing solution adapting it to the 

data. The second proposal employs synthetic images of a known 

environment and applies function fitting to the resulted data. The 

resulting function matches the algorithm and the data as best as 

possible.  An extensive evaluation set is used to validate the 

findings. Both real and synthetic test cases were employed in 

different scenarios. The test results are consistent and show 

significant improvements compared to traditional solutions. 

 
Index Terms—Stereo Vision, Sub-pixel accuracy, Function 

fitting, Interpolation function 

 

I. INTRODUCTION 

UBPIXEL accuracy is a very important component in 

stereo vision systems. Using the stereo imaging model the 

distances measured in the scene are inversely proportional with 

the pixel disparity in the two images. Sub-pixel level disparity 

calculation is required to maintain accuracy over a large metric 

range.  

Stereo-vision is the process of extracting depth information 

from the environment by using 2 or more images from 

different viewpoints. The 2D projection of a point from space 

is related to its distance and the imager position. By matching 

the projections in multiple positions, the depth component can 

be extracted. The disparity represents the number of pixels by 
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which a given point is displaced between two images. This is 

the only parameter estimated by the stereo algorithm in terms 

of depth estimation. Since the disparity is inversely 

proportional to the metric distance, long range applications of 

stereo vision require accurate sub-pixel level disparity 

estimate. To have an idea about the necessary accuracy, let us 

consider the stereo setup used for this paper and deployed as 

part of an automotive system. For an object located at 60 

meters any disparity error larger than 0.1 pixels will result in a 

relative distance error greater than 2.5%, well beyond the 

required specifications. Thus results the necessity to improve 

the disparity error beyond the capabilities of currents systems. 

Traditionally short-baseline stereo systems are considered to 

lack the long range accuracy necessary for such systems and as 

a result larger baselines are used. However this brings other 

issues such as difficult matches, larger occlusions. If we look 

at how the disparity is transformed into distance, we can 

observe that there is a linear correspondence between the pixel 

error and the baseline. Thus if sub-pixel error can be reduced 

by a significant enough factor, the solution can become 

competitive with current wide-baseline setups.  

Equation 1 shows the relation where Z is the real depth Zerr 

is the depth error, FB is the combination of focal and baseline. 

The disparity is denoted by D and its error by Derr, while k 

represents the improvement factor. 
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The original taxonomy proposed by Scharstein and Szeliski 

[1] classifies stereo algorithms into two main groups, local and 

global methods. The group of local algorithms uses a finite 

support region around each point to calculate the disparities. 

The methods are based around the selected matching metric 

and usually apply some matching aggregation for smoothing. 

The window aggregation allows a local smoothing of the 

disparity values. Larger windows reduce the number of 

mismatches but also reduce the detection rate at object 

boundaries. Different aggregation strategies were proposed to 

handle this issue. The main advantage of local methods is the 

small [2] computational complexity which allows for real-time 

implementations [3], [4]. The main disadvantage is that only 

local information is used at each step. As a result these 

methods are not able to handle featureless regions or repetitive 

patterns.  

Global algorithms are able to improve the quality of the 
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disparity map by enforcing several global constraints in the 

disparity selection phase. These constraints can include the 

ordering constraint, the uniqueness constraint and also a 

smoothness constraint. The resulting stereo-matching problem 

is modeled as a global energy function which is required to be 

minimized. For the general 2D case the problem is considered 

to be NP and different approximations were proposed such as 

simulated annealing, belief propagation or graph-cut to reduce 

the running time [1], [5]. Although benchmarks [6] show a 

significant improvement in the disparity map quality, these 

methods are not applicable for real-time applications, because 

the running times are several magnitudes larger than those 

achieved by local methods, usually in the range tens of 

seconds even on current hardware [7]. There are also issues 

when using these methods for driver assistance systems where 

imaging errors are frequent [8]. 

In 2005 Hirschmüller proposed the Semi-global matching 

(SGM) [9] stereo algorithm as an alternative to existing 

solutions which achieves high quality results while maintaining 

a reduced execution time. This algorithm cannot be classified 

using the original taxonomy, thus a new group was created, the 

group of semi-global algorithms. The method performs 

multiple 1D energy optimizations on the image. The different 

1D paths run at different angles to approximate a 2D 

optimization. By using multiple paths instead of a single one, it 

can avoid a streaky behavior common with previous 

algorithms such as dynamic programming or scan-line 

optimizations. The energy optimization is based on a 

correlation-cost and a smoothness constraint. The smoothness 

is enforced by two components, a small penalty, P1, used for 

small disparity differences and a larger penalty, P2, used for 

disparity discontinuities. The larger penalty is adaptive and 

based on intensity changes to help with object borders. The 

form of the energy function is: 
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where D is the set of disparities, C is the cost function and Np 

is the neighborhood of the point p in all directions. The 

function T turns the values true and false into 1 and 

respectively 0. Dp and Dq represent the selected disparities in 

the points p and q. The Middlebury benchmark [6] shows the 

results achieved using this. The algorithm consistently 

achieves results similar to the computationally most expensive 

methods while clearly differentiating itself from other real-

time solutions. Several real-time implementations [10], [11], 

[12] were also proposed for smaller resolution images. These 

results show that the method represents a good compromise 

between speed and accuracy for real-time systems such as 

automotive applications. 

Generally stereo algorithms use a simple parabola 

interpolation [1], [3], [4]. The method uses the smallest 

matching value and its neighbors to interpolate a parabola 

around the three points [13], [14]. The location of the 

minimum point for this parabola will represent the sub-pixel 

shift. This solution is mathematically accurate if the matching 

function can be modeled at least locally as a 2nd degree 

polynomial. However in 2001 Shimitzu and Okutomi [15] 

have highlighted that this solution presents a serious issue for 

the simple window based stereo algorithm, namely the pixel-

locking effect where given sub-pixel ranges are favored and 

large errors can accumulate. 

Another solution proposed for sub-pixel interpolation is the 

use of a linear function [13], [14]. The linearity is motivated 

for simple stereo algorithms which are based on aggregation. 

The symmetric V interpolation proposed for the Tyzx DeepSea 

development system is one such solution [16]. This system 

shows high accuracy thanks to the synergy between the stereo 

algorithm and the sub-pixel interpolation function. 

This paper describes in detail two new methodologies that 

can extract new interpolation functions based on the behavior 

of the stereo setup. This allows the interpolation to be hand-

crafted for the setup to make sure that maximum accuracy is 

achieved. 

The first proposal is based on the histogram model of a real 

scene. Using histogram equalization an existing interpolation 

model can be adapted to reduce the sub-pixel errors. Although 

the histogram equalization is difficult in the continuous 

domain, this solution allows the use of real images. 

For the second proposal function fitting is used to estimate 

the shape of the interpolation function more accurately. This 

methodology requires extensive knowledge about the scene, 

which is difficult to obtain in a real setting. But this paper 

shows that synthetic images work well as a work-around. In 

the latter case, this methodology should be validated using real 

images, to make sure that there are no differences in the 

imaging processes. 

An exhaustive battery of tests is used to validate the results. 

Results are tested both on synthetic and real images with 

different configurations in terms of relative angle and texture 

characteristics. Even the parts of the Middlebury benchmark 

are included to show the behavior on well-known reference 

images. Evaluation focuses on planar surfaces since the main 

motivation was to improve consistent sub-pixel errors 

introduced by the current interpolation functions. In the case of 

complex shapes the sub-pixel values is affected by multiple 

sources of errors which may lead to inconsistent results. For a 

modular design solutions to handle these errors should be 

decoupled from the interpolation function, the latter based on 

the model without geometric information. In this case the 

scene complexity is not relevant for evaluating the 

interpolation function accuracy. 

II. RELATED WORK 

A. Fractional Disparities 

The idea of using fractional disparities was first proposed by 
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Shimitzu and Okutomi [15]. They observed that the sub-pixel 

errors can be cancelled through the use of the cost function of 

images shifted by 0.5 pixels. The shifted images will have the 

error function inverted compared to the regular image-pair. 

Although this solution proved to be quite effective, its main 

disadvantage is that the stereo matching has to be performed 2 

times resulting in a significant waste of computing resources. 

Szeliski and Scharstein [21] performed a thorough 

evaluation of this idea using Fourier analysis and different up-

sampling techniques. Their results show that an up-sampling 

using the sinc interpolator and a factor of 2 can result in 

significant reduction in errors. Unfortunately the paper 

evaluates the solution only for a simple window based stereo 

algorithm. 

B. Solutions for Long Range Stereo Accuracy 

Gehrig and Franke [22] have also proposed two solutions to 

improve the accuracy for the Semi-Global stereo vision 

algorithm. The first solution extends the disparity range 

through the use of fractional disparities. This method is based 

on the work presented by Szeliski and Scharstein [21], but for 

some reason the up-sampling factor was increased to 4. This 

may be due to the inherent complexity of the stereo algorithm. 

Using this up-sampling the sub-pixel range covered by each 

cost matrix step will be reduced to 0.25. The disadvantage of 

this solution is the significant increase in execution time and 

memory requirements. 

To further improve the accuracy for planar surface, Gehrig 

and Franke also propose the use of adaptive smoothing. It is 

based on the local homogeneity of the distance values on local 

patches. The paper shows that planar surfaces are well 

reconstructed when multiple iterations are used, but the 

computational cost is significant for a real-time system. It is 

also unknown, how the smoothing affects the 3D points for 

non-planar objects and discontinuities. This is highlighted by 

the fact that the error percentages increased for some of the 

scenarios. 

III. STEREO SETUP 

Modern stereo methods such as the Semi-Global method [9] 

use multiple non-linear transforms. Describing the complete 

mathematical model of the sub-pixel interpolation is difficult 

in this case. Examples of such transformations are the census 

transform and also global and semi-global optimizations. The 

distribution of the matching values also varies between the 

solutions and as such it is important to mention the stereo 

algorithm for which we propose an interpolation function. 

The stereo algorithm selected for this paper is a variation of 

the basic Semi-Global method [17]. These modifications 

concern both the running time and the sub-pixel accuracy. The 

configuration selected for this paper uses only 4 directions for 

reducing the computational complexity and improving 

hardware integration. Using only the horizontal and vertical 

directions the memory access pattern and parallelization 

pattern can be optimized for the GPU architecture. The 

original description [9] specifies that the recommended 

number of directions is at least 8 to achieve quality, but 

previous tests [17] show that the difference is insignificant for 

automotive applications. Another test [18] also supports 

similar results for generic scene, even though the authors’ view 

was different. The system used for this paper is optimized for 

automotive scenes where the object surfaces are usually tilted 

around the image axis. Consequently diagonal directions 

introduce no extra information. 

An issue was also observed concerning the sub-pixel 

accuracy of the original system. The P1 component affects the 

matching values used in sub-pixel interpolation. The values at 

the positions -1 and +1 may be shifted with the constant P1. As 

a result some of the sub-pixel values are corrupted and point 

scatter is increased. We proposed the elimination of this 

component from the equation. The new equation is: 

( ) ( ) [ ]2,
p

p q

p q N

p
E D P T D DC p D

∈

= + ∗ ≠
 
 
 

∑ ∑ . (3) 

For the correlation metric the proposed solution uses the 

Census transform. This metric has the main advantage of being 

independent of luminosity and contrast differences between 

cameras. Other papers [19], [20] evaluated the different 

metrics and the Census transform was consistently one of the 

best solutions especially in the presence of radiometric errors. 

These features are important for an automotive system where 

the precise calibration of cameras is difficult. The original 

metrics proposed for the Semi-Global method were shown to 

be not effective in such systems. Another solution [12] 

proposed uses ZSAD, but in previous tests [17] the Census 

based solution presented a reduction in disparity errors. Fig. 1 

presents a comparison of the two solutions on a typical 

scenario. 

IV. INTERPOLATION FUNCTION THEORY 

In this paper we focus on the different interpolation function 

shapes as a means to improve the sub-pixel accuracy. The 

shapes have a significant effect on the final distribution of 

points, and it should match the mathematical model of the 

matching cost distributions. We propose a common framework 

to define and compare different shapes. 

We use the classic function prototype for sub-pixel 

interpolation, the same as legacy solutions: 

( ), ,Final d 1 d d 1d d f m m m
− +

= + , (4) 

 

Fig. 1.  Intersection scene. Comparison of different solutions, left is 

SGM+ZSAD, and right is using SGM + Census. 
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where d is the integer disparity, f(md-1,md,md+1) generates the 

sub-pixel disparity, and m is the matching cost for the different 

disparity steps. We believe that the input parameters contain 

enough information for an accurate interpolation, while 

preserving simplicity.  

But having 3 independent input parameters is too difficult 

when modeling. By finding correlation between the parameters 

the dimensionality of the problem can be reduced. The first 

observation is the invariance of the sub-pixel position to any 

translation applied on the matching cost values. All 3 values 

are translated, such that 
d

m becomes 0. As a result the number 

of independent variables becomes 2. 

d 1 d

d 1 d

leftDif m m

rightDif m m

−

+

= −

= −
 (5) 

Finding the correlation between these variables is more 

difficult. A proper mathematical model has never been 

described, thus it was important to work with empirical 

observations. A synthetic benchmark was used for this 

purpose. The scene contains a large surface parallel to the 

imager plane.  A non-repetitive pattern is used to reduce stereo 

uncertainty (Fig. 2). The stereo system is chosen to have 

similar parameters as a real system with a baseline of 44cm 

and a focal length of 6mm. The imaging resolution is 512x383.   

 

Fig. 2. Example image (right camera, distance is 62.17m) 

The position of the plane is set to distances corresponding to 

disparity values ranging from 3.5 to 4.5 pixels using a step of 0.05. 

A careful analysis of the data (Fig. 3) shows a correlation 

between the polar angle, described by leftDif and rightDif, and 

the expected sub-pixel value. Since the polar angle is based on 

the ratio between the two parameters, the latter will be used for 

the proposed model. Taking into account the symmetricity of 

the problem, the ratio can also be limited to the range [0, 1] 

(equations 6 and 7). The final interpolation function (equation 

8) maps this ration to the sub-pixel value.  
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where:

- interpFunction :[0,1] [0,0.5]

- interpFunction is monotonic increasing

-interpFunction(0) 0

-interpFunction(1) 0.5

→

=

=

 (8) 

The proposed model can also be used to describe both 

traditional interpolation functions. The resulted interpolation 

functions are simple and straightforward, suggesting that the 

model is general and suitable for designing new interpolations 

functions. The following equations use basic transformations 

to bring the parabola interpolation into the required template. 
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The interpolation function shape:

interpFunction( )
1

x
x

x
=

+

 (10) 

 

Applying the model to the linear interpolation is even easier, 

since it is also based on the ratio of matching cost differences. 
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Fig. 3.  X-leftDif, Y-rightDif, gray-sub-pixel value scaled 0 to 1. 
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The interpolation function shape:

interpFunction( ) / 2x x=
 (12) 

V. INTERPOLATION FUNCTION BASED ON DATA HISTOGRAM 

A. Histogram, a Known Model for Real Data 

The first proposed approach [23] uses real images to extract 

knowledge about the interpolation functions. The problem with 

using real images is the lack of detailed ground truth 

information. The solution is to work on a higher abstraction 

level then raw pixel data, for example a histogram of sub-pixel 

values. The latter models a planar surface with a flat histogram 

shape. This information is available even when other 

knowledge about the environment is missing. By comparing 

the resulted histogram to the reference model, problem areas 

can be highlighted and corrected. 

This experiment used a set of real images containing a 

segment of road surface covered with featureless pavement. A 

rectangle of interest is applied to consider only road points 

from the scene. These points are part of a single planar surface 

and cover a multiple disparity values. As presented previously, 

the sub-pixel range should be covered homogenously in the 

resulting histogram bins. Although matching errors may exist, 

their effect is insignificant from a statistical point of view. 

Using road textures increases the amount of uncertainty, 

leading a significant spread in the 3D points. The histogram 

will be better covered, leading to a smoother shape and 

helping analysis.  

B. Histogram Equalization and Resulting Function 

Besides visual feed-back, this model allows a systematic 

correction through histogram equalization. Although histogram 

equalization was proposed for discrete values, the 

mathematical model can also be used for a continuous range. 

Suppose p(x) is the probability that the sub-pixel shift is 

equal with x. This value is the real continuous probability, 

which is only approximated in the measurements. The 

interpFunction is used for the equalization. 
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The probability function is transformed to take into account 

the symmetricity of interpFunction. The function cdf 

represents the cumulative distribution function in the 

continuous domain. The difficulty lies in the estimation of the 

probability density function, based on the available 

measurements. After applying the integral operator in the 

function, any errors will be magnified. 

Fig. 4 and Fig. 5 present the occurrences of different sub-

pixel shift values for the two legacy solutions.  From these 

figures we try to estimate the shape of the continuous 

probability function p. 

Unfortunately the shape for the parabola interpolation is 

quite complex making it hard to determine the function p, 

comparatively the linear interpolation histogram shows a linear 

behavior in each of the symmetric sub-halves. It can be 

described by the linear function: 

 ( )
Transformed

p x a x b= ∗ +             (14) 

For this paper the model parameters are estimated 

empirically. This solution works well since the general shape 

of the interpolation function can also be deduced without 

knowledge about the parameters. The large amount of noise in 

the data made it difficult to perform the entire process 

automatically. Future work may be able to provide a more 

robust work-flow.  

The chosen parameters are 1; 0.5a b= = . Integrating the 

probability distribution function and composing it with the 

original linear interpolation functions yields: 
2

interpFunction( )
4

x x
x

+
= . (15) 

The histogram resulted with the new function is presented 

on Fig. 6. The distribution is significantly improved compared 

to the legacy solutions. This method is the first proposal for an 

improved sub-pixel interpolation function. 

Sub-pixel histogram for linear interpolation
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Fig. 5.  Histogram of sub-pixel value using linear interpolation. X axis is  the 

sub-pixel value compared to the closest integer. Y axis is occurrence. 

Sub-pixel histogram for parabola interpolation
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Fig. 4.  Histogram of sub-pixel values using parabola interpolation. X axis is 

the sub-pixel value compared to the closest integer. Y axis is occurrence. 
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VI.  INTERPOLATION FUNCTION BASED ON FITTING 

A. Basic Methodology 

The second proposed approach [23] is to use synthetic 

images to model the sub-pixel interpolation functions. The 

synthetic images have the advantage of an accurate 

representation for a predefined scene. The same benchmark is 

used as in section IV. Each image contains a vertical surface at 

a distance corresponding to a given sub-pixel location. For 

each image we log the data used by the sub-pixel interpolation. 

Because the proposed interpolation model uses the same data 

for all of the methods, we only need to save the triplet (leftdif, 

rightDif, expectedSubpixel) for each point. Using this data-set 

we can model the sub-pixel interpolation function through 

function fitting. This solution allows us to devise an interpolation 

function that is a perfect match for the extracted data. But we still 

need to validate if the data distribution is representative of the 

stereo algorithm in different scenarios. A thorough evaluation of 

the results is presented in the sections VII and VIII. 

B. Function Fitting 

As the metric for function fitting we choose the maximum 

error. Compared to using the sum of errors, this metric reduces 

the error peaks. For a robust system we consider that it is much 

more important to consider this worst case error. The fitting 

method uses non-linear regression to handle different 

component functions. The components are based on the 

preliminary analysis of the data [23]. For this paper different 

polynomial and trigonometric functions were combined, with 

the final results being generated by the following model:  

 

2 3interpFunction( ) cos
2

x A x B x C x D x E
π 

= ∗ + ∗ + ∗ + ∗ ∗ + 
 

 
(16)

 

 

The best fit was achieved when the sinusoidal component 

represented 99% of the final function. We consider that the 

polynomial components are too small to take into account 

because they are within the error margin of the imaging 

process. The sinusoidal function has the following formula: 

1
interpFunction( ) 0.5 cos

2 2
x x

π 
= − ∗ ∗ 

 
. (17) 

Fig. 7 compares the shape of the interpolation functions 

across the input domain. While the parabola is concave and the 

linear interpolation is straight, the two new functions are both 

convex. The output of the last function is less then half of the 

parabola in the entire first half of the input domain, resulting in 

a significantly different point distribution in the final depth 

image. 

 
Fig. 7.  Plot of interpolation function shapes. 

 

VII. EVALUATION USING SYNTHETIC IMAGES 

A. Vertical Surfaces 

 The first test uses the synthetic images generated for 

function fitting. Although this selection favors the sinusoidal, 

we use this test to have a baseline before the detailed 

evaluation. The disparity range corresponds to a metric range 

from 48 to 62 meters. For measuring the distance of the 

surface from the camera we use the mean distance of the 3D 

points. The numerical results are presented in table I. 

 

 
The results show that traditional solutions are a poor match 

to the stereo algorithm and they present significant errors. 

Both of the proposed solutions are based on the stereo 

algorithm and the errors are reduced accordingly. The 

sinusoidal function resulted from the fitting process has the 

lowest errors by far compared to the other results. These 

results could be dismissed since the same image sequence is 

used for fitting and evaluation. Still all of the further tests 

show the similar results concerning the pixel errors. 
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Fig. 6.  Histogram of sub-pixel value using proposed interpolation. . X axis is 

the sub-pixel value compared to the closest integer. Y axis is occurrence. 

TABLE I 

ERRORS FOR VERTICAL SURFACES 

Method 
AVERAGE 

 (PIXEL) 

AVERAGE 

(REL) 

 MAX 

(PIXEL) 

MAX 

(REL) 

Parabola 0.124 3.10 % 0.215 5.60 % 

Linear 0.080 2 % 0.138 3.65 % 

Histogram  0.045 1.12 % 0.081 2.17 % 

Fitting  0.026 0.64 % 0.053 1.38 % 

PIXEL – Error in pixels / REL – Relative distance error 

Histogram – Function generated using histogram equalization 

Fitting – Function generated using function fitting 
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B. Surface at Different Angles 

 For this evaluation we wanted to see the effect of the 

surface tilt on the error rates. We use the same methodology to 

generate a synthetic scene containing a surface at 60 meters 

tilted at 30/45/60 degrees in the YZ coordinate system. The 

middle of the camera baseline is centered compared to the 

surface. For evaluation the averages of the Y and Z values are 

measured along the image rows. As a result we can calculate 

the error between the measured Z and the expected Z based on 

the Y value. The results for the three scenes are compared in 

tables II, III and IV. 

 

 

 
 

The results for all of the scenarios are consistent and similar 

with the results found for the vertical surfaces. Looking at the 

average error we can observe a factor of 2 improvements for 

the sinusoidal function compared to the other proposal and a 

factor of 5 compared to the linear interpolation. 

 

C. Horizontal Surface 

 Besides angled surfaces we also evaluate a horizontal 

surface. The scene contains a large horizontal surface 2 meters 

below the level of the cameras. The same texture is used as in 

the previous tests. For estimating the surface once more we 

project the points in the 3D metric space. In this case it is hard 

to estimate the real Z distance for each image row. In 

consequence we observe the deviation of the Y values from the 

real height of 2 meters. Again we average the values along the 

image rows to reduce the spread. Although the differences 

between the interpolation algorithms are reduced, the order 

between them remains as presented in table V. 

 

 

D. Vertical Surface with road specific texture 

 To verify that the results are not specific to the texture, we 

generate the same scenario, but using road texture taken from 

the real world. The source of the texture is a tarmac segment of 

a real image. Compared to the highly detailed pattern used for 

the previous test, this texture contains very weak features. 

Road surface was specifically selected because it is one of the 

scenarios encountered by the stereo system when deployed in 

an automotive environment. An example image is presented in 

Fig. 8. 

For the evaluation we used only the range of disparities 

from 3.5 to 4. Table VI presents the results using the new 

image-set. 

 
 

The results show that the increased uncertainty amplifies the 

erroneous behavior for all of the solutions. Although the effect 

is different for each solution, the order is unaffected and the 

newly proposed methods still far better than the traditional 

ones. 

 

E. Effects of Up-Sampling 

 We also verified the claims of using up-sampling to 

improve sub-pixel quality [8], [12], [13]. Again we used the 

fitting image-set and increased the linear resolution of the 

images by a factor of 2. For each image the middle was 

cropped to yield a new image of the original resolution. For 

this test again we used only the sub-range of disparities from 

3.5 to 4. The new error rates are presented in table VII. 

 
 

Fig. 8.  Vertical surface textured with road segment. Left image. 

TABLE VI 

ERRORS FOR VERTICAL SURFACES (ROAD TEXTURE) 

Method 
AVERAGE 

 (PIXEL) 

AVERAGE 

(REL) 

 MAX 

(PIXEL) 

MAX 

(REL) 

Parabola 0.150 3.79 % 0.264 6.81 % 

Linear 0.112 2.82 % 0.192 5.03 % 

Histogram 0.081 2.03 % 0.136 3.6 % 

Fitting 0.065 1.64 % 0.113 2.73 % 

 

TABLE V 

DEVIATION IN Y VALUES FOR HORIZONTAL SURFACE 

Method 
AVERAGE 

 (ABS) 

MAX 

(ABS) 

Parabola 8.05 mm 21.66 mm 

Linear 7.09 mm 17.93 mm 

Histogram 6.6 mm 16.3 mm 

Fitting 6.5 mm 15.7 mm 

ABS – Absolute error 

 

TABLE IV 

ERRORS FOR TILTED SURFACE (60 DEGREES) 

Method 
AVERAGE 

 (PIXEL) 

AVERAGE 

(REL) 

 MAX 

(PIXEL) 

MAX 

(REL) 

Parabola 0.107 3.05 % 0.180 4.96 % 

Linear 0.059 1.68 % 0.103 2.83 % 

Histogram 0.022 0.64 % 0.052 1.47 % 

Fitting 0.010 0.27 % 0.027 0.77 % 

 

TABLE II 

ERRORS FOR TILTED SURFACE (30 DEGREES) 

Method 
AVERAGE 

 (PIXEL) 

AVERAGE 

(REL) 

 MAX 

(PIXEL) 

MAX 

(REL) 

Parabola 0.113 2.8 % 0.217 5.17 % 

Linear 0.063 1.58 % 0.133 3.13 % 

Histogram 0.025 0.64 % 0.087 1.92 % 

Fitting 0.011 0.28 % 0.051 1.13 % 

 

 
TABLE III 

ERRORS FOR TILTED SURFACE (45 DEGREES) 

Method 
AVERAGE 

 (PIXEL) 

AVERAGE 

(REL) 

 MAX 

(PIXEL) 

MAX 

(REL) 

Parabola 0.101 2.65 % 0.208 4.65 % 

Linear 0.053 1.38 % 0.113 2.61 % 

Histogram 0.017 0.46 % 0.047 1.25 % 

Fitting 0.012 0.32 % 0.041 1.01 % 
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As observed in previous work [8], [12], [13] the 

oversampling significantly reduces the errors for traditional 

interpolation methods. A small improvement is also obtained 

for the histogram based solution. In the case of the sinusoidal 

the maximum error is increased, but the average error is almost 

unchanged. It seems that the up-sampling affects this solution 

negatively. Even in this case the sinusoidal presents the lowest 

errors, but when using this solution we do not recommend 

combining it with up-sampling to improve the results. 

 

F. More Traditional SGM 

 The last synthetic test concerns the applicability on a more 

traditional SGM implementation. Table VIII shows that results 

when applying all 8 optimization directions. This shows that 

even though the functions were adapted for a specific stereo 

framework, they can be reused in other variants. For the best 

performance it is still recommended to apply the proposed 

function generation strategies for each algorithm 

configuration. 

The results show that traditional solutions are a poor match 

to the selected stereo algorithm and they present significant 

errors. Both of the proposed solutions are based on the stereo 

algorithm and the errors are reduced accordingly. The 

sinusoidal function resulted from the fitting process has the 

lowest errors, especially the average values which is almost 4 

times better than even the histogram based solution. Part of 

this result is due to using the same image sequence for fitting 

and evaluation. Still all further tests show the same tendency 

even if the error for the sinusoidal increases slightly. 

 

 

VIII. VALIDATION USING REAL IMAGES 

A. Vertical Surfaces 

 For the first test concerning real images, we use vertical 

surfaces textured with the same pattern used for the synthetic 

images. The pattern was printed on a large canvas surface 

spanning 1.5x2 meters. The canvas was hung from a height 

slightly greater than 1 meter to create a well textured vertical 

surface for the evaluation (Fig. 9). The distance between the 

camera system and the canvas was measured using a laser 

rangefinder for maximum accuracy. Here we present the 

results from two scenarios, one at 25.31 meters from the 

canvas and one at 30.27 meters. For this system these 

correspond to disparities of 8.76 and respectively 7.3 pixels.  

To limit the effects of the imaging errors, we selected a 

rectangle of interest for both scenarios where the reconstructed 

surface was homogeneous. The distance values were averaged 

along the image row to reduce the spread. Table IX includes 

the distance deviations from the reference values provided by 

the rangefinder. The values are consistent with the previous 

evaluations. There is little difference between maximum and 

average values because each scenario covers a single disparity 

and the errors are similar for each image row. 

 

 

B. Tilted Surface 

 For a second test we used the same canvas to generate a 

tilted surface. A panel having a width of 2 meters and a height 

of 1 meter was used for support. The test scenario is similar 

with the tilted synthetic test. The surface ranges from 17.1 to 

17.8 meters, corresponding to a disparity range from 8.03 to 

7.71. Once more the results (table X) correspond to the 

synthetic tests. 

Both of the real world tests validate the previous evaluations 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Parking lot scene. Top image is original left image. Bottom image was 

generated using Sub-pixel Optimized Real-Time SGM algorithm. 

TABLE IX 

PIXEL ERRORS FOR REAL VERTICAL SURFACES 

Method 
AVERAGE 

 30.27M 

AVERAGE 

25.31M 

 MAX 

30.2M 

MAX 

25.31M 

Parabola 0.168 0.156 0.180 0.165 

Linear 0.094 0.090 0.109 0.103 

Histogram 0.036 0.037 0.051 0.051 

Fitting 0.008 0.010 0.018 0.026 

 

TABLE VIII 

ERRORS FOR VERTICAL SURFACES 

Method 
AVERAGE 

 (PIXEL) 

AVERAGE 

(REL) 

 MAX 

(PIXEL) 

MAX 

(REL) 

Parabola 0.127 3.16 % 0.220 5.70 % 

Linear 0.082 2.05 % 0.141 3.72 % 

Histogram 0.046 1.17 % 0.083 2.21 % 

Fitting 0.027 0.68 % 0.054 1.40 % 

 

TABLE VII 

ERRORS FOR VERTICAL SURFACES (UP-SAMPLING) 

Method 
AVERAGE 

 (PIXEL) 

AVERAGE 

(REL) 

 MAX 

(PIXEL) 

MAX 

(REL) 

Parabola 0.061 1.45 % 0.134 3.26 % 

Linear 0.045 1.06 % 0.103 2.52% 

Histogram 0.031 0.74 % 0.080 1.94 % 

Fitting 0.025 0.62 % 0.066 1.67 % 
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and they prove that the proposed synthetic benchmark can 

replace real images when detailed information is needed about 

the environment.  

 

 

C. Standard Benchmark 

 The last validation uses the Middlebury benchmark [6] to 

measure the number of erroneous matches at sub-pixel level. A 

suitable image for sub-pixel interpolation is the Venus 

sequence with a number of tilted surfaces. The pixel locking 

effect is highlighted for this sequence as the surface looses its 

continuity with the traditional solutions. Images 2 and 6 are 

selected as the input pair because ground-truth is available for 

them with resolution of 0.125 pixels. For a further validation 

the Teddy and Cones sequences were also analyzed since they 

contain complex objects. Unfortunately ground truth is 

available only with an accuracy of 0.25 pixels. 
TABLE XI 

PERCENTAGE OF FALSE MATCHES  

Method 

VENUS 

(threshold of 

0.125) 

TEDDY 

(threshold of 

0.25) 

CONES 

(threshold of 

0.25) 

Parabola 37.6 % 17.9 % 24.59 % 

Linear 29.0 % 15.4 % 22.44 % 

Histogram 24.6 % 14.3 % 21.00 % 

Fitting 23.9 % 14.3 % 21.40 % 

 

In the case of the Venus images the number of erroneous 

matches is reduced significantly since the error threshold is 

low enough to highlight the problems of classical approaches. 

The improvements are also visible for the Teddy and Cones 

sequences, but are not as significant due to the higher error 

threshold. Fig. 10 presents the resulting disparity maps. 

 

 
 

Fig. 10. Left to right reconstructed Venus, Teddy and Cones images. 

D. Advantages in environment perception 

The reduced depth error also improves the performance of 

associated environment perception systems. First and foremost 

object distance estimates will be more accurate since they are 

based on the individual point distances. The removal of the 

pixel locking effect also improves the homogeneity of the 

point distribution. Algorithms based on clustering or statistical 

sampling which uses this data will thus be more efficient and 

work at longer distances. One example of this behavior is 

visible in the case of the elevation map algorithm [24] which is 

now able to generate a more refined classified occupancy grid 

(Fig.11). High accuracy also allows a better delimitation 

between side-walk and road surfaces, increasing the curb-

detection range. 

 

 
 

Fig. 11.  Urban scene, top image is the classified occupancy grid, 

bottom image is the depth map. 

IX. EVALUATION USING LOCAL STEREO ALGORITHM 

One of the main ideas presented in this work is the 

dependence of the sub-pixel interpolation on the stereo 

algorithm. This behavior was observed during the evaluation 

of selected stereo system compared to a different real-time 

solution.  

In this evaluation we use a local stereo algorithm using the 

Census and a multi-window setup. The system is similar to the 

one proposed, by Hirschmüller in 2002 [3]. Using the Census 

transform for the matching metric improves the pixel level 

quality compared to other metrics such as SAD or ZSAD [9], 

[10]. The multi-window setup takes into account 9 windows 

arranged in a 3x3 grid. The grid step is twice the window size. 

For the final cost we select the minimum between the original 

window cost and the averages along the horizontal, the vertical 

axis and the diagonals. The option of preserving the original 

window cost allows a more accurate reconstruction along 

object boundaries. The same confidence based filtering and 

left-right consistency check is used to eliminate the errors as in 

the original system using the SGM algorithm. 

For the evaluation we use 2 images from the tilted surface 

set, the 30 and the 45 degree scenario. Tables XII and XIII 

TABLE X 

ERRORS FOR REAL TILTED SURFACE 

Method 
AVERAGE 

 (PIXEL) 

AVERAGE 

(REL) 

 MAX 

(PIXEL) 

MAX 

(REL) 

Parabola 0.081 1.15 % 0.159 2.25 % 

Linear 0.050 0.7 % 0.098 1.39 % 

Histogram 0.024 0.34 % 0.050 0.73 % 

Fitting 0.013 0.18 % 0.027 0.41 % 
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show the new error values. 

 

 

 
For the traditional solutions the relative error is reduced by 

almost 2% compared to previous evaluations, with the linear 

interpolation being the best of all 4 options. The solutions 

proposed by us have the worst results, showing that they are 

not universal solution. Both evaluations are consistent with 

each other, showing that it is not an exceptional situation. 

Even though local algorithms fare better in terms of sub-

pixel interpolation with the traditional functions, these 

algorithms present pixel level deficiencies which limit their 

use in current systems. With the advances in hardware 

performance multiple real-time implementations were already 

presented which use the SGM algorithm for correlation. The 

sub-pixel advances presented in this paper are combined with 

the algorithm adaptations and optimizations presented in [9] to 

create a high performance system called Sub-pixel Optimized 

Real-time SGM (SORT-SGM). Fig. 9 and Fig. 12 show a 

comparison of this system with a high performance local 

algorithm based one, the Tyzx DeepSea development board. 

The huge difference in point density shows why modern 

algorithms such as the SGM are important for future 

development.  

As a result defining a new interpolation function shape is 

not enough with the continuous evolution of stereo algorithms. 

It is more important to define clear and repeatable 

methodologies to adapt the sub-pixel interpolation to each 

stereo system. The two parts can then evolve side-by-side and 

sub-pixel accuracy is maintained. 

 

X. CONCLUSION 

The lack of accuracy of short-baseline stereo systems has 

long been considered one of its important downsides. 

However, by increasing the pixel accuracy by factor of 5, it 

becomes competitive with current wide-baseline solutions 

since accuracy is linearly proportional to the baseline. 

One of the main ideas introduced in this paper is the 

correlation between the stereo algorithm and the sub-pixel 

interpolation. Although this correlation is expected from the 

mathematical model, literature has not considered it when 

presenting new sub-pixel interpolation models. The evaluation 

comparing the interpolation techniques shows different 

behavior when used together with different stereo algorithm. 

High accuracy cannot be achieved without using algorithm 

specific interpolation functions. 

As such two methodologies are proposed to solve this 

problem. Both methodologies are based on data provided by 

the stereo algorithm. Through this link the interpolation 

becomes dependant of the selected algorithm and matches its 

behavior. 

Extensive evaluations show the improvements gained using 

the proposed methodologies. Traditional sub-pixel 

interpolation methods perform poorly when used with modern 

stereo solutions such as the SGM algorithm. The interpolation 

function resulted from the fitting process was the most 

accurate, having error rates several times reduced compared to 

the other solutions. The findings were validated through the 

use of both synthetic and real images take in different 

scenarios. The results were consistent across all evaluations.  

In conclusion the proposed methods help designers generate 

algorithm specific interpolation functions which eliminate the 

pixel-locking effect. The simple 3 input function model is 

preserved, allowing easy integration into existing systems. The 

computational cost is also limited to a few arithmetic 

operations per pixel, similar with traditional solutions. These 

characteristics allow the new functions to be used as a drop-in 

replacement for a large range of existing stereo systems, 

improving accuracy with limited cost.  
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